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Preface

In writing this book, my goal is to demonstrate how easy, useful and fun, the
modeling of physical systems can be. For me, there is nothing that a computer
can be used for that is more interesting than simulating the behavior of physical
systems. The term “physical systems” refers to the behavior of physics-based
models found across many disciplines (e.g., electrical engineering, mechanical
engineering, chemistry, physics). Such systems can be identified by their use
of conservation principles (e.g., first law of thermodynamics and conservation
of mass).

In this book I will describe how the Modelica modeling language can be
used to describe the behavior of physical systems. Modelica can be used for
a wide range of applications from simple systems with only a few degrees of
freedom all the way up to complex systems made of large networks of reusable
components.

The first part of the book is focused on introducing the reader to the Mod-
elica modeling language. The target audience would be somebody with an
understanding of basic physics and calculus, an interest in modeling and no
knowledge of Modelica. The intent is to cover all the basics of the language
using simple examples and enable the reader to begin writing models in Mod-
elica.

Each chapter in the first part of the book starts with an overview of the
important concepts the chapter introduces. Whenever a new term is introduced
it will appear italicized and a definition for it will be included in the glossary.
The overview is then followed by a series of examples meant to gradually
introduce Modelica functionality. I feel that examples are an important part of
the learning process. I have tried to avoid using contrived examples. In fact,
many of the examples come from real world problems I have encountered. The
difficulty with examples is that they do not introduce material in a structured
way, but rather in a “flowing” way. For this reason, many chapters include
a “Language Fundamentals” section which attempts to formalize all of the
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concepts introduced by the examples. Readers may feel free to skip over the
material in the fundamentals section if they feel comfortable with the features
presented in that chapter. An important note about the structure of this book is
that each example introduces new concepts. In other words, do not assume
that because you understood the first example in a chapter all the remaining
examples are not worth studying.

The second part of the book demonstrates how to most effectively use the
powerful features of the Modelica language. This part is intended for people
who are already familiar with the basics of the Modelica language, including
existing users of Modelica and beginners who have completed the first part.

This book covers nearly all of the features of the Modelica language. How-
ever, much of this material is only required in advanced applications. The
“core” material required to begin doing meaningful modeling can be found in
Chapters 1, 2, 3 and 7. Readers may wish to focus their attention on those
chapters first and then consult the other chapters as they become more proficient.

Realize that it is not possible to introduce every nuance of the Modelica lan-
guage through examples. Once you have covered the material in this book,
you will require a definitive reference. The ultimate source of information
about Modelica is the language specification itself. For this reason, the Model-
ica language specification is included on the companion CD-ROM. While not
appropriate for learning the language, it is appropriate as a reference on the
semantics of the language.

In summary, this book includes material that will have broad appeal and
will serve both beginners and experienced users trying to get the most out of
physical system modeling.

MICHAEL TILLER



Chapter 1

INTRODUCTION

1.1  WHAT IS MODELICA?

Before diving into the details of modeling using Modelica, let me provide a
brief description of what Modelica is, why it was developed and what it is used
for.

Since the invention of the computer, modeling and simulation have been
an important part of computing. Initially, modelers were burdened with con-
verting their models into systems of ordinary differential equations (ODEs)
and then writing code to integrate those differential equations in order to run
simulations. Eventually, a wide range of integrators were developed as inde-
pendent software units and modelers were able to focus on the formulation of
differential equations and use “off-the-shelf”” integrators for simulation. This
trend of allowing modelers to focus more on the behavioral description of their
problems and less on the solution methods has continued ever since.

In the last three decades, numerous tools have been developed to assist
modelers in performing simulations. Some of these were general purpose
simulation tools such as ACSL!, Easy5?, SystemBuild* and Simulink.* Other
tools were developed for simulations in specific engineering domains such
as electrical circuits (e.g., Spice®), multi-body systems (e.g., ADAMSS) or
chemical processes (e.g., ASPEN Plus’). Each type of tool has its advantages.

YACSL is a trademark of The AEgis Technologies Group, Inc.
2Easys is a trademark of The Boeing Company.

3SystemBuild is a trademark of Wind River Systems, Inc.
4Simulink is a trademark of The MathWorks, Inc.

SSpice is a trademark of the University of California at Berkeley.
SADAMS is a trademark of Mechanical Dynamics, Inc.
7ASPEN Plus is a trademark of Aspen Technologies, Inc.
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For example, general purpose tools do not restrict modelers to a particular
domain but they may require the modeler to spend some time formulating
their models for that particular tool. Likewise, tools developed for a specific
engineering domain have numerical methods and graphical user interfaces
which are optimal for that particular domain but they restrict the ability of the
modeler to create mixed-domain models.

In 1978, Hilding Elmqvist pioneered, as part of his Ph.D. thesis, a new
approach to modeling physical systems by designing and implementing the
Dymola modeling language (Elmqvist, 1978). The basic idea behind the Dy-
mola modeling language was to use general equations, objects and connections
to allow model developers to look at modeling from a physical perspective
instead of a mathematical one.® For the Dymola implementation, graph theo-
retical and symbolic algorithms were introduced to transform the model to an
appropriate form for numerical solvers. An important milestone in the devel-
opment of this approach came in 1988 with the development of the Pantelides
algorithm for DAE index reduction (Pantelides, 1988). Following Dymola,
numerous other tools (e.g., Omola, see Mattsson et al., 1993) were developed
to further explore this new approach to modeling.

A major problem with all simulation tools has been that models developed
using one tool could not be used by another. In 1996, Hilding Elmqvist
initiated an effort to unify the splintered landscape of modeling languages
by initiating the development of the Modelica modeling language. Similar
initiatives have been undertaken by various other groups (see Heinkel et al.,
2000 and Fitzpatrick and Miller, 1995) but these efforts have been focused
primarily on the electrical domain, while Modelica strives to be completely
domain neutral.

The basic idea behind Modelica was to create a modeling language that
could express the behavior of models from a wide range of engineering do-
mains without limiting those models to a particular commercial tool. In other
words, Modelica is both a modeling language and a model exchange speci-
fication. To accomplish this goal, the developers of previous object-oriented
modeling languages like Allan, Dymola, NMF, ObjectMath, Omola, SIDOPS+
and Smile were brought together with experts from many engineering domains
to create the specification for the Modelica language based on their wide range
of experiences.’

Modelica can be used to solve a variety of problems that can be expressed
in terms of differential-algebraic equations (DAEs) describing the behavior
of continuous variables. The ability to formulate problems as DAEs rather
than ODE:s reduces the burden on the model developer because less effort is

8The physical and mathematical approaches are contrasted in Chapter 11.
9A detailed history of how the Modelica modeling language was developed is contained in Appendix A.
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involved in formulating equations. Inaddition to handling continuous variables,
Modelica includes features for describing the behavior of discrete variables
(e.g., digital signals). Often, it is convenient or even necessary to simulate both
continuous and discrete behavior at the same time. Modelica allows both forms
of behavior to be described within the same system model or even the same
component model.

Modelica is a non-proprietary modeling language and the name is a trade-
mark of the Modelica Association which is responsible for publication of
the Modelica language specification. At present, Modelica is not an ISO,
ANSI or IEEE standard. This means that Modelica is presently a “moving
target” in much the same way as C++ was for about a decade. In the case
of C++, avoiding the rush to standardize did not prevent people from making
use of the language and ultimately led to a much better language. Hope-
fully, Modelica will follow a similar path. If a need can be demonstrated
for functionality not already present in the Modelica language, users can
work with the Modelica Association to fill functionality gaps. The current
Modelica specification can be found at the Modelica Association web site:
http://www.modelica.org. Version 1.4 of the Modelica specification
is included on the companion CD-ROM.

If you have ever been involved in large scale modeling projects you proba-
bly recognize that model development is in many ways similar to large scale
software development. Just like a programming language, the purpose of a
modeling language is to describe the behavior of small pieces of a larger sys-
tem. A modeling language should encourage reuse of previous work and help
manage the complexity of systems as they become larger. It should be possible,
once a reusable set of components has been created, to work at an increasingly
higher level (i.e., getting away from writing equations at the component level
and working more on the assembly of a complex system). Ultimately, this
leads to the ability to build systems using a “top-down” approach rather than a
“bottom-up” approach.

All simulation results presented in this book were generated using Dymola
(Dynamic Modeling Laboratory).! An evaluation copy of Dymola is pro-
vided by Dynasim (Elmgqyvist et al., 2001) on the companion CD-ROM so that
readers may gain hands-on experience with using the Modelica language. To
understand how to simulate Modelica models using Dymola, please read the
documentation titled “Getting Started with Dymola” which is included with
the Dymola software. Dymola can also be used to generate models that can be
imported into Simulink.

'9Dymola is a trademark of Dynasim AB.
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1.2 WHAT CAN MODELICA BE USED FOR?

Modelica can be used for many things, including simulation of electrical
circuits (Clauss et al., 2000), automotive powertrains (Otter et al., 2000), power
system stability (Larsson, 2000), vehicle dynamics (Tiller et al., 2000) and
hydraulic systems (Beater, 2000). However, the best way to understand what
Modelica can be used for is through an example. While most of the chapters in
the book use relatively simple examples to highlight specific language features,
we will start by giving a glimpse of “the big picture”.

In this section we will show bits and pieces of a substantial library of
Modelica models for simulating automobile performance. The library was
developed for this book to demonstrate how reasonably complex systems can
be modeled. While the library contains a large number of models, most of
the models are quite simple. Because these models are relatively simple, they
will give us only a rough estimate of how particular automobile designs will
perform. The Modelicamodels from this section are provided on the companion
CD-ROM and discussed in greater detail in Chapter 10.

sports_car

race_track

Figure 1.1. A 0-100 kilometer per hour test.

Imagine we wish to predict the acceleration performance for a particular
sports car design. In order to judge the performance, we will measure the time
it takes the vehicle to accelerate from zero to one hundred kilometers per hour.
Figure 1.1 shows our performance test which includes a sports car and a race
track.

Do not be fooled into thinking the model we are simulating is not detailed just
because the picture looks simple. This is just the top-level view of the problem.
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Figure 1.2 shows what we find if we look inside our sports car model. Behind
the scenes, the sports car model includes models of the chassis, transmission
and engine as well as a shifting strategy that decides when to change gears.
Behind all of these images are behavioral models (i.e., the images themselves
are just used to help identify what the models represent). As we shall see, even
this view of the sports car gives a deceptively simple impression.

road

Figure 1.2.  Taking a look at what is under the hood.

The engine model for our sports car is one of many components in Figure 1.2.
If we open up the engine model we can see each of the four individual cylinders
(shown in Figure 1.3). Again, the images of engine cylinders are graphics added
to the models so they can be easily identified as engine cylinders. Behind each
of these pictures is a detailed schematic of the components used to model an
individual engine cylinder.

If we open up one of these cylinders, we find the numerous low-level com-
ponent models shown in Figure 1.4. By zooming in to each of the various
models shown so far, we have gone from the complete vehicle level (shown
in Figure 1.1) all the way down to models of individual components such as
engine valves (shown in Figure 1.4). The ability to construct such hierarchies
is a central feature of Modelica. In addition, the ability to include graphical
representations for the models, as we have seen in these figures, is also a feature
provided by Modelica.

Each of the graphics shown in Figure 1.4 represents a component involved
in the function of an individual engine cylinder. We cannot “zoom” into these



8  INTRODUCTION TO PHYSICAL MODELING WITH MODELICA

.. oylinder1 cylinder3 ~ cylinder2 cylinderd

J=0.03
.;\?shaﬂwinenia

crankshaft

Figure 1.3.  Looking inside the engine.

models because they represent the smallest pieces in the system. In a sense,
they are the “atoms” of our system. It is important to understand that these
pieces are not magical primitives that just happen to come with the software
package we used to build this model. In fact, it is at this component level
that we turn our attention away from all the graphics toward the real subject
of this book: the Modelica modeling language. Previously, we have seen
how the Modelica modeling language can be used to describe hierarchies of
components. At the “atomic” level, it can also be used to describe the behavior
of each of these components. The remainder of the book will provide all the
necessary information to build such components and an enormous variety of
other components in other engineering domains.

Building models is fun, but ultimately we want to see results from such mod-
els. When we run our simulation, we find that the sports car model presented
in this section can go from zero to 100 kilometers per hour in 6.88 seconds.
Figure 1.5 shows several different pieces of information recorded during the
test. Notice how the transmission gear changes at different vehicle speeds. We
can also see how the engine speed increases up until the transmission shifts
and then it drops again. These are just a handful of signals we can extract from
our simulation. Other useful pieces of information available include manifold
pressure, trapped mass in the cylinder, traction force on the tires, transmission
clutch pressures, etc. Studying such information can provide important insights
during the design process.

Once we have a model that gives us good results, the next logical step is to
ask ourselves “what if?”. The sports car in our race model includes numerous
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crankshaft

Figure 1.4. Looking inside an individual engine cylinder.

design details. For example, we can easily specify the engine geometry, valve
timing, shift schedule, vehicle weight, tire radius, and so on. By changing these
values, we can determine the impact each of these parameters has on overall
system performance.

Remember, Modelica is a domain-neutral modeling language useful for
creating models from nearly any engineering domain. The remainder of the
book shows how models from many other engineering domains can be created
using the Modelica modeling language.
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Figure 1.5.  Simulation results from a sample race.

1.3 MODELING FORMALISMS

Before we start discussing how to use Modelica to develop models, let us
take a moment to talk about modeling in general. There are many formalisms
used for modeling continuous systems. An excellent overview of different
formalisms is presented in Astrom et al., 1998. Modelica supports two of the
common approaches to modeling in engineering.!! The first is called block
diagram modeling and the other is called acausal modeling.!? In this section
we will discuss block diagrams and acausal formulations to better understand
the differences between them.

1.3.1  Block diagrams

Using block diagrams, a system is described in terms of quantities that
are known and quantities that are unknown. A block diagram consists of
components, called blocks, which use the known quantities to compute the
unknown quantities. A block diagram of a PI (proportional-integral) controller
is shown in Figure 1.6.

!'In addition, other formalisms like bond graphs (see Cellier, 1991) and petri nets can also be described in
Modelica.

12 Acausal modeling is sometimes referred to as first principles modeling.
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Figure 1.6.  PI Controller.

On the left side of Figure 1.6 are the known quantities w, (the desired
speed), and w,, (the actual motor speed as read by the speed sensor). On the
right side of Figure 1.6, the torque used to control the system is computed.
In between are the blocks which describe the computations being performed.
In this example, the difference block takes the desired and sensed speed as
an input and computes as an output the difference (i.e., the error). One gain
block then multiplies the speed difference by the gain, K. The scaled speed
difference is passed through another gain block, scaled by 71; and integrated.
We compute the control torque by summing the outputs from the gain blocks.

This approach to modeling is often used when designing control systems.
For example, tools such as Simulink and SystemBuild use this approach. A
block diagram is a natural way of expressing a control system design. However,
such diagrams have their limitations as we shall demonstrate in Chapter 11.

1.3.2  Acausal modeling

Describing system or component behavior in terms of conservation laws
is referred to as acausal modeling. With acausal formulations, there is no
explicit specification of system inputs and outputs. Instead, the constitutive
equations of components (e.g., Ohm’s law for a resistor) are combined with
conservation equations to determine the overall system of equations to be
solved. For example, when modeling electrical systems, like the circuit shown
in Figure 1.7, one can use Kirchhoff’s current law (a conservation law), which
states that the sum of the currents into a particular node (in this case, a, b or
c) must be zero. The application of conservation laws results, in general, in
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systems of differential-algebraic equations (DAEs). Dymola and Saber'* are
two examples of tools that allow acausal formulations.

L=100 mH R=15Q

a_____.__b..l‘c

+

\Y%

2 1001=D

e

Figure 1.7.  RLC circuit schematic.

In order to formulate acausal models, it is useful to identify the through
variables and the across variables for the component being modeled. In
general, the across variable represents the driving force in the system and
the through variable represents the flow of some conserved quantity. For an
electrical system, the voltage is the across variable and the current is the through
variable. Note that the product of the through variable and the across variable
typically has the units of power (i.e, Watts in SI units). Table 1.1 includes
several examples of through and across variables for different engineering
domains.

Domain Through Across

Electrical Current (A) Voltage (17)

Mechanical (translational) || Force (V) Velocity (m/s)
Mechanical (rotational) Torque (N'm) Angular Velocity (rad/s)
Hydraulic Flow Rate (m>/s) | Pressure (N/m®)

Table 1.1.  Through and across variables from various domains.

1.3.3 Further remarks on formalisms

As we shall demonstrate in Chapter 11, block diagrams are convenient for
control system modeling and acausal formulations are convenient for physical

13Saber is a trademark of Avant! Corporation.
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system modeling (i.e., plant modeling). Not only does Modelica support both
of these important types of modeling, but it allows both of them to be used
together.

14 MODELICA STANDARD LIBRARY

In addition to defining the specification for the Modelica language, the
Modelica Association also publishes a standard library of Modelica models.
This library, called the Modelica Standard Library (or MSL), is available free
of charge. !4

The MSL was developed so that users of the Modelica language would
not have to create their own basic models for the common modeling domains.
Throughout this book, we start off by developing Modelica models from scratch
to demonstrate the fundamentals of the language. Then, we point out similar
models which already exist within the MSL. In this way, we can cover language
fundamentals and models available in the MSL.

Keep in mind that the MSL is not a collection of black box models which are
hard-wired into a tool. Instead, the Modelica representation of all the models
can be viewed to help understand exactly what behavior is modeled. These
models are no different than any other Modelica models. It should be noted
that while the models contained in the MSL are useful, you are not required to
use them.

While reading this book, be on the lookout for uses of the MSL. These can
be easily recognized by looking for names that begin with “Modelica.”. All
such entities belong to the MSL. For example, the physical type Modelica. -
SIunits.Voltageis defined in the MSL. You should interpret this name to
mean “Voltage is a type defined in the STunits package nested inside the
Modelica package”. The package structure of Modelica libraries (including
the MSL) is hierarchical and may contain numerous nested packages. Do not
be surprised to see much longer names like:

Modelica.Electrical.Analog.Basic.Resistor

1.5  BASIC VOCABULARY

The Modelicalanguage specification uses a precise vocabulary for describing
the elements of the Modelica language. While being rigorous is necessary in a
formal specification, it is not always good in learning material. For this reason,
this book uses a simplified vocabulary. In the remaining chapters, the following
terms are used:

14As with most things related to Modelica, the MSL can be found at http: //www.modelica.org
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model A model is a behavioral description. For example, a model of a resistor
is described by Ohm’s law. The model is a description of resistor behavior,
not the resistor itself. In other words, it is important to separate the idea of a
resistor model (i.e., V' = I« R) from the resistor instances (components with
different values of resistance, R). If you are familiar with object-oriented
programming, a model is analogous to a class.

component A component is an instance of a model. So, for a given model
(e.g., a resistor model), the actual instances (e.g., the resistors) would be
components.

subcomponent A subcomponent is used to refer to components which are
contained within other components. For example, a resistor might be a sub-
component of another component like an electrical circuit. Furthermore, the
electrical circuit could be a subcomponent of an appliance. Subcomponents
are used to form hierarchical models.

system model A system model is a model which is completely self-contained.
In other words, it does not have any external connections and it contains the
same number of equations as unknowns.

quantity A quantity refers to those entities which have a value (e.g., the
resistance of a resistor). In Modelica, all values are either real, integer,
string or boolean. Furthermore, a quantity might be a scalar or an array.

definition The description of all variables, parameters and equations associ-
ated with a model is called the model definition.

declaration When a component, parameter, variable or constant is instantiated
(either in a system model or inside another component), that is called a
declaration.

package A package refers to a collection of Modelica models, which are
meant to be used together. For example, an electrical package would likely
include definitions of resistor, capacitor and inductor models.

keyword A keyword is a word, such as model, that has a specific meaning
in Modelica. As a result, keywords are reserved words and cannot be used
as names in declarations (e.g., of variables). In the examples, the keywords
will appear in bold.

Use the explanations of these terms as a reference to help understand the
more complicated explanations in this book. The glossary, which starts on page
324, includes these terms and many more used in this book.
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1.6 SUMMARY

In summary, the Modelica language is a non-proprietary, domain-neutral
modeling language that supports several different modeling formalisms. Mod-
elica can be used to model both continuous and discrete behavior and an
extensive multi-domain library of models known as the Modelica Standard
Library is available free of charge at http://www.modelica.org.



